
Performance Analysis of the 1GHz Motorola G4 RISC processor versus
the 1.13 GHz P3 and 2.4 GHz P4 Intel CISC processors

P. Aaron Lott
AMSC 662
Final Report

Abstract

We discuss the implementation and analysis of optimization analysis code that tests Mo-
torola 745x RISC and Intel x86 architectures.

Introduction

To begin my project I started out with the assembly code from the text book [1] that measures
the number of cycles it takes to complete a routine on a x86 based machine. I then searched
through two technical manuals for the Motorola G4 RISC chip to find out how to access the
cycle counter, I was able to find the register where the data is stored namely PMC1, but
nothing was said on how to access it or how often the register is updated. Fortunately I was able
to use some frameworks called CHUD developed by Apple’s Architecture and Performance
Group. With this tool, not only was I able to access the cycle counter, but also the instruction
counter, which we found to be important in analyzing the performance of the Chip. On the Intel
side, I re-wrote and tested the cycle counter code so that I could measure runs on x86 machines.
To test the machines, I re-wrote the vector summation functions ”The combine codes” from
lecture notes so that I could define arbitrary data types, i.e. int, float, double, or even abstract
data types if one had an application they wish to test using such. I then structured my code
using the C preprocessor #ifdef statements so that one can simply choose from a parameter file
the data type, size of vector, and type of test, i.e. G4 or x86 cycle counters. Finally I created
a Makefile to manage compilation flags and compilers. (At this time only gcc has been used
successfully.)

Code Rundown

I’ve kept my code very general so that one will be able to use this to test their own scheme.
I developed the user interface so one modifies the parameter and Makefiles file to define a
function in which to test. Excerpts from the README file:

To implement your own routine you will need to first define the function to
receive values void my_func(vec_ptr v, DATATYPE *dest). (you may want to use
one of the combine* functions as a template). Then call the function from
the call_combine.c function. You’ll be able to insert your code beneath the
code for combine6aaa for example. You will also want to create a variable for
your count. Depending on the architecture you wish to test you’ll either
define it in the code block

#ifdef X86_ON
double count1,count2,count3,count4,count4p,count5,count6,count6aa,count6aaa;
#endif

1



Figure 1: Here we see the differences between the various optimization techniques discussed in
class. We note that the gcc -O2 flag doesn’t come close to replacing good programming techniques.
The code was run on a P4 2.4 GHz machine

for intel based machines, or

#ifdef NEW_CHUD
double count1,count2,count3,count4,count4p,count5,count6,count6aa,count6aaa;
double icount1,icount2,icount3,icount4,icount4p,icount5,icount6,icount6aa,icount6aaa;
#endif

for PPC based machines.

Then print out the value at the bottom of the routine
(again dependent on the architeture).

#ifdef X86_ON
printf("\ncycles=[%f,%f,%f,%f,%f,%f,%f,%f,%f];\n",count1,count2,
count3,count4,count4p,count5,count6,count6aa,count6aaa);

2



#endif

#ifdef NEW_CHUD
ount5,count6,count6aa,count6aaa);
printf("\ninstructions=[%f,%f,%f,%f,%f,%f,%f,%f,%f];\n",icount1,icount2,
icount3,icount4,icount4p,icount5,icount6,icount6aa,icount6aaa);
#endif

Finally include your file in the include.h file directly beneath the combine6aa.c.
Setup the parameters.h and Makefile appropriately & enjoy!

In order to run the code for the G4/ Motorola 745x chip set one needs to have the CHUD de-
velopment toolkit installed on their apple computer. Fortunately, the toolkit being used is the
primary toolkit for performance analysis developed by Apple, and the GUI implies compatibil-
ity with the IBM G5 64 bit processors. Thus this toolkit should also work for these processors
as well.
To choose between the G4 and x86 cycle counters, edit the parameters.h file and comment out
or include the corresponding flag. From the parameters.h file showing the G4 cycle counter
(NEW CHUD) will be enabled, while the G4 GUI (MONster), and X86ON flags are disabled.

/* Set this if you’re running on an intel machine*/
//#define X86_ON

/*
I recommend using NEW_CHUD instead of CHUD_ON (which uses MONster)
I’ve found MONster doesn’t take into account the latency of the PMC readers.
*/

#define NEW_CHUD
//#define CHUD_ON

MATLAB Vector output

Setting the NEWCHUD or X86 ON flag will output to the screen a vector of values (Two for
the NEWCHUD flag one for the X86ON flag. The output is in MATLAB vector format and
scripts are available to plot the bar graphs shown throughout this paper. The cycles vector lists
the number of clock cycles it took to perform the operations defined in callcombine.c. On the
G4, there is an additional vector, instructions, that lists the number of instructions needed to
perform the same operations.

MONster output

Running with the CHUDON flag will allow the remote access of the MONster program to
read the registers being updated during your code. To setup MONster, you will need to do the
following:

Launch MONster (/Developer/Applications/Performance Tools/CHUD/MONster.app)

3



select the Sampling Tab

choose User from the Privilege process filter pop up menu on the left

choose Marked from the Performance Mark filter pop up

choose 1- CPU Cycles from the PMC-1 event list on the right

choose Instruction from the PMC-2 event list on the right

press the Command+Shift+R keys to enable Remote Performance Monitoring Mode

select the Results Tab

Finally, run your code and MONster will write the results from your run in the Results window
with Labels corresponding to the the name of the function being tested. MONster will output
the results to a text file if you wish.

Availability

All the code, including the C combine routines, performance routines as well as the MAT-
LAB plotting routines, makefiles, and pre-compiled binaries for both x86-linux and OS X-G4
platforms is available on my project website at:

http://www.lcv.umd.edu/~palott/research/graduate/662/downloads/src
and
http://www.lcv.umd.edu/~palott/research/graduate/662/downloads/output

CHUD is available from the macupdate website at:

http://www.macupdate.com/info.php/id/8506

Results

Apple G4/ Motorola 7455

From figure 2, we see that the results here are about 9 times slower that what we expected
on the highly optimized combine5 code, which theoretically should obtain a CPE of 1.00, but
instead we measure the CPE to be 8.9928. One would think that this is because the processor is
burning up clock cycles to to cache misses, etc. especially since the G4 is suppose to be capable
of performing 2 IPC (Instructions Per Cycle) for both integer and floating point arithmetic, and
1 IPC for doubles. Figure 3 shows us the number of instructions per clock cycle.
This shows us that even though we have optimized code, we don’t necessarily get optimal
results. It seems that through all of our optimizations we have made so few instructions that
the clock is actually hungry for data. Thus we need a faster bus to feed the processor. It would
be ideal if we could indeed prove this by measuring the number of instructions performed by
the x86 machines with faster buses, or a G5 with a faster bus. Unfortunately we don’t have
access to information.

Pentium III and Pentium IV

From figure 4, we see that the results here are about what we expected on the highly optimized
combine5 code, which theoretically should obtain a CPE of 1.00, but instead we measure
the CPE to be 1.6915 on the 1.13 GHz PIII machine, and 1.4432 on the 2.4 GHz P4 machine.
Oddly, however, both machines do much worse one the combine6 code that performs a product
of the vector entries using a straight forward unrolling method. The error is corrected by doing
a more clever parallel unrolling, but it is obvious that both machines are confused my the
straightforward combine6 code for all data types except for integer. Even more strange is the
fact that the code performs worse on the Pentium 4 machine.

4



void combine6(vec_ptr v, DATATYPE *dest)
{

int i;
int length=vec_length(v);
int limit= length-1;
DATATYPE *data=get_vec_start(v);
DATATYPE x0=1;
DATATYPE x1=1;
DATATYPE sum=0;

/*
Combine 2 elements at a time
*/

for (i=0;i<limit; i+=3) {
x0*=data[i];
x1*=data[i+1];

}
for(; i<length; i++){

x0*=data[i];
}
*dest=x0+x1;

}

Summary/Conclusion

We have developed a suite of code that performs useful optimization analysis on several ar-
chitectures, providing a simple way for programmers/scientists to analyze their code before
investing in ”better” hardware. From our tests, we have shown that on average a 1.13 GHz
P3 processor performs less clock cycles for the same operations than a 2.4GHz P4 processor.
While a 1GHz G4 processor performs almost 10 times more clock cycles that a 1.13 GHz P3
processor, thus nullifying many claims of the G4 PPC processor. Testing one’s core code with
such software can provide a useful measure of expectation before purchasing a new machine,
or cluster to run ones code, and also serves as a development bed for testing new machine
dependent optimization algorithms.

References

Computer Systems A Programmer’s Perspective. R. Bryant and D. O’Hallaron. Prentice Hall
2003.

5



Appendix

Raw Data

Note: To obtain the bar charts we used MATLAB’s bar function with the following data.

G4

Clock Cycles

88.4828 39.2676 88.3124 39.4634 100.9066 50.4017
78.8806 37.6489 78.7765 38.0842 89.5357 48.9801
27.8623 13.2181 28.0469 13.9837 39.9443 26.0655
26.0360 9.0821 26.6462 10.1852 37.9702 20.3727
23.9951 9.7454 24.1947 10.7312 35.4855 21.3215
14.6235 8.9928 14.8139 10.3558 23.7701 20.6216
16.2511 8.9765 16.2889 10.1697 25.3217 20.3435
15.8821 8.6264 15.8860 9.6844 25.7340 20.3916
15.1290 9.4557 15.3702 10.2980 25.7842 20.3161

Instruction Count

58.0036 24.0022 58.0034 24.0023 58.0039 24.0024
48.0035 24.0022 48.0036 24.0020 48.0037 24.0027
16.0049 6.0023 16.0048 6.0021 16.0049 6.0028
14.0048 4.0023 14.0051 4.0024 14.0053 4.0028
11.0054 4.0029 11.0055 4.0028 11.0056 4.0033
7.7060 2.4026 7.7058 2.4023 7.7060 2.4032
7.6737 2.3369 7.6736 2.3368 7.6741 2.3374
7.0066 2.3366 7.0065 2.3365 7.0071 2.3370
8.1742 2.6698 8.1742 2.6697 8.1748 2.6700

Pentium

PIII Clock Cycles

41.9619 38.6834 43.3517 39.4787 57.0388 54.0593
34.7470 28.6405 34.7963 29.3651 56.5289 47.0554
10.4426 6.3208 10.6506 8.0614 31.5237 23.2627
8.8505 2.2265 9.4565 3.0526 13.0206 3.0295
8.1808 2.2177 8.0779 3.0478 14.4798 3.0345
4.1632 1.6915 4.5602 1.6829 5.8070 1.8671
4.6294 1.3491 42.6922 21.3690 47.0750 21.3865
4.3602 1.3505 4.4147 1.9468 10.1841 2.0109

PIV Clock Cycles

40.2740 32.4760 44.3892 35.8648 76.1108 74.4592
30.1948 24.1312 32.1856 26.3308 74.1976 65.2044
10.5876 3.4340 26.2012 27.1076 26.5232 28.0752
10.7632 2.0472 29.0892 6.0340 28.3756 6.0280
7.6048 2.0476 27.1300 5.0332 26.8936 5.0284
3.6772 1.4432 4.5968 2.1372 4.7372 2.2788
12.2144 4.8988 310.2800 162.9360 299.5640 163.6760
11.4840 5.1340 10.1264 2.3644 9.6504 2.3672

6



Vector Routines

Sums

combine1 - Uses a straight forward method to compute the vector sum. Accessing a non-
local variable to update the sum during each iteration, as well as calling getvec element and
vec length during each iteration. Very inefficient. Poor use of locality.

combine2 - Same as combine1, but now computes and stores the veclength on time outside
the loop and access this local variable when needed.

combine3 - New routine called getvec start is called and then a local array index is updated
to access the next vector entry each time. Otherwise the same as combine2.

combine4 - Same as combine3 except the sum is now stored in a local variable and copied to
the non-local variable after the sum is computed.

combine4p - Same as combine4 except the pointer is accessed directly instead of through the
array references. (actually generates worse assembly code).

combine5 - Same as combine4 except that we unroll the loop taking advantage of free integer
or floating point operations.

Products

combine6 - Same as combine5, except we are now doing multiplication, and thus we attempt
to do parallel unrolling. (Combining two elements at a time)

combine6aa - Same as combine6, except we multiply pairs of vector elements first, then mul-
tiply by the larger product, trying to reduce the ”tree height”.

combine6aaa - Same as combine6aa, except we multiply more pairs of vector elements first,
then multiply by the larger product, trying to further reduce the ”tree height”.

7



Figure 2: Performance Results from G4 Runs with 10000 elements. Cycles per element on top,
Instructions per element on the bottom.

8



Figure 3: Performance Results from G4 Runs with 10000 elements. Instructions Per Cycle.
Nowhere close to optimal performance

9



Figure 4: Performance Results from P3 and P4 Runs with 10000 elements respectively.
10


